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ABSTRACT

Cumulative scarch-evasion games (CSEGs) involve two plavers, a searcher and an
evader, who move among some finite set of cells. Neither plaver is aware of the other
playver’s position during any stage of the game. When the pavoff for the game is as-
sumed te be the number of times the searcher and evader occupy the same cell, Eagle
and Washburn proposed two solution techniques: one by fictitious play and the other
by solving equivalent linear programming formulations. However, both have proved to
be time consuming even for moderately sized problems.

This thesis considers two alternate lincar programming formulations for CSEGs.
Since both contain a large number of variables and constraints, the linear programming
problems are imtially solved with many of the constraints removed. If the solution to
this relaxed problem is not a feasible optimal solution. additional constraints arc added
and the problem is solved again. This process continues until a feasible optimal solution
is found. The results from a numerical experimentation with various solution techniques

arc also presented.
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I. INTRODUCTION

Cumulative search-evasion games (CSEGs) involve two plavers, a searcher and an
evader, who move among some finite set of cells, C. Neither player is aware of the other
plaver’s position during any stage of the game. Let X, and Y, represent the positions
of the searcher and evader, respectively, at time t. If the cells are numbered from 1 to
n. then X;=1and Y, =] for some i,j € {1,2,...,n} for all t. The pavoff of the game, \. is
given by

.
N= D AN 0

=1

where T is the number of time periods and A(X.. Y. t) is the pavoff function. The
searcher wants to choose his strategy so as to maximize the expected pavoll, E[\]: the
evader desires to minimize the expected payofl. While there are many other suitable
pavofl functions. the one of interest is an indicator of the event X, = Y,. In this case,
the pavofl is equal to the average number of times that the two plavers occupy the same
cell simurtancously.

This study assumes that the starting positions for both the searcher and the evader
are specified.  In particular, let S, and E, denote the starting locations (cells) of the
scarcher and evader, respectively. From one period to the next, both plavers are allowed
to onlv move to cells which are adjacent to their currently occupied cells. In time period
t. let the sets S(X..t) and E(Y.t) denote the cells which are adjacent to X, and Y. then
N..; and Y., must belong to S(X..t) and E(Y..t), respectively. Figure | displavs a one
dimensional CSEG with four cells. If X,=3, then X,., must belong to S(X.t)={2, 3,
4f. In essence, the plavers are not allowed to “leapfrog” to non-neighboring cells in one
time period. Lagle and Washburn give several applications for CSEGs [Ref. 1].

Note that the objective function in a CSEG is not the probability of detection. In
most scarch theory, the measure of eflectiveness (MOL) to be maximized is the expected
probability of detection. This MOE is most often given as E[1 — e™], where N is as

defined as above and AN Y. t) is interpreted as the detection rate at time t. (Sce
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Figure 1. One Dimensional CSEG -- Motion Feasibility

Koopman[Ref. 2 ].} Since E[1 —e~] # 1 — e-t™, the CSEG solution cannot be in-
terpreted as a detection probability except when N is very small (Eagle and Washburn
[Ref. 17).

Most search theory deals with the optimal allocation of a searcher’s effort to detect
a target which is not allowed to actively evade. Most approaches (see Stone [Ref. 3])
rely on Bavesian methods for finding optimal search plans. Stone [Ref. 4] also surveys
an extensive literature for finding optimal search allocation where the searcher is un-
constrained and target motion follows a Markov process. Eagle [Ref. 5] and Stewart

[Ref. 6 ] have studied the problem where the searcher is constrained.




Gal [Ref. 7] and Ruckle [Ref. 8] have considered games in which the target has
been allowed to actively evade, using “time until capture” or “time until first detection”
as the pavofl. Stewart [Ref. 9] studied optimal search and evasion strategies for a two
cell model under various constraints. Stewart’s study assumes a detection rate pavofl
function which makes the analvtical solution difficult for even the small model consid-
ered. CSEGs are thus an improvement on models such as Stewart’s in the sense that
games with several cells can be considered. The price paid for this is that CSEGs require

a specific, analyvtically convenient form for the objective function.




1. EAGLE-WASHBURN FORMULATION

LCagle and Washburn [Ref. 1] offered two methods for solving CSEGs. One method
is the Brown-Robinson method of fictitious play [Ref. 10]. The other approach is for-
mulating the CSEG as a linear programming (LP) problem. Similar to the normal
method of LP solution, there are two linear programming formulations: one for the
searcher and the other for the evader. Both are equivalent in that they are duals of each
other. lHowever. unlike the normal method, where each pure strategyv has a decision
variable and a pavofl matrix must be computed, this formulation is expressed in terms
of marginal probabilities of the searcher occupving the cells in each time period t. The
main motivation of this formulation is to avoid generating all possible pure strategies for
both the scarcher and evader. The number of pure strategics grows exponentially as a
function of the length of the game, T, and the number of cells in S(X,. t) and L(Y.t).
For example. for a one dimensional search problem with 20 time periods and $(X..t) and
L(Y.1) each containing three cells for each time pericd, there are 3* pure strategies for
cach plaver.

To formulate the linear programming formulation for the searcher, Lagle and
Washburn define the following:

p(i.t) = the marginal probability that the searcher occupies cell i at time t

u(ij.t) = the probabilitv that the searcher will visit cell i at time t and cell j at time
t+ 1

7).ty = the smallest possible pavofl accumulated from period t to period T given that
the evader occupies cell j in time period t

S-(i.t) = the set of cells in time period t-1 from which the searcher can recach cell 11n
time period t. That is,

S™i1) = {ke Clie S(ka—1))

jorieC and t=2.3.....,T, where S(Kk,t-1) is as previously defined. For example, in Figure
LLS(la+1) = {1.2}.




Then, the lincar programming problem can be stated as fcllows:
max z(£;.1)
subject to

p(Sp.1) =1

= ) W=D+ ) ik =0 i€ C =23, T~ 1
A
Jje SN keSu.n)

SIS+ ) Sk =0
ke S(S,.1)

=N WiT =04 =0 ieC

- Z;I(i,/’.!}p(i./) —ctha+ D) +:))<0;, je C, ke E(r), t=12,....T—1

ieC

- in(i./\'.l')f»s(k,'l') +z26.1)=0; ieC

el

wig N =0 ije Cor=01..T-1

(7)

(8)

The objective function above corresponds to maximizing the nunimum pavofl for

the scarcher given that the evader starts in cell E;. Constraint (2) then restricts the

scarcher to start in cell §; . To vaiidate constraint (3). Eagle and Washburn observed

that fori1eC and t=1,2,....T-1,

plit) = Z u(ij.n

jesSu.n

or, alternatively

(9




plig) = Z u(jir—1). (1

je ST

Then. constraint (3) essentially enforces the equality of two equivalent expressions, (9)
and (10), for p(i.t). There is also a network interpretation for constraint (3). Figure 2
depicts the network interpretation for a one dimensional CSEG with three cells and three
time periods. The node (1,t) in the network represents cell 1 in the time period t and the
flow on an arc connecting node (1.t) to (j,t + 1) is represented by u(1,},t). Then, constraint
(3) is simply the conservation of flows at each node (1.t). Constraints (4) and (5) repre-
sent the ternunal conditions for p(i.t) for t=1 and t=T, respectively.

Based on the definition. z().t) can be written as

N : .
sy = > Atignplia) +min z(kr+ 1 1
y.1) — (i, 2)plir) ke[}w ) (

where z(+,T+ 1)=0. Constraint (6) is simply the linear representation of equatiyn (11).
Similar to constraints {4) and (5). constraint {(7) is the terminal condition of equation
(11).

The linear programnung formulation for the evader is the dual of the above and is
not presented here. The reader is referred to Eagle and Washburn [Ref. 1] for the de-
tails. However, it should be pointed out that the above formulation still contains a large
number of decision variables, which in turn contributes to the extensive CPU time re-
quired to solve even a moderately sized CSEG. Most of these variables are u(i.j.l) vari-
ables. One objective of this thesis is to model the searcher’s problem without these flow
variables.

For the one dimensional CSEG, the tormulation contains (3n-2) T flow variables and
nT smallest pavofl (z(i.t)) variables. (Marginal probability (p(i,t)) variables can be cal-
culated from u(ig.t) variables: thev are not needed to solve the LP.}) The number of
constrain:s needed 1s approximately (dn-2)T + 2n.

The game reaches equilibrium when both searcher and evader margina! probabilities
are uniform over cells 1,2,....,n. It can be shown that once the p(e.t) and g(s.t) reach this

distribution.  these distnibutions are optimal from that time onward (Lagle and
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u(1,1,1)

u(2,3,2)

@ indicates cell i in time period t

Figure 2. Network Flow Interpretation of a One Dimensional CSEG

Washburn [Ref. 1]). In order for the game to reach equilibrium, it was found by ex-
periment that T = 1.5n. Thus, the Eagle-Washburn formulation requires on the order
of 6n® variables and constraints.

In the next chapter, two alternate linear programming formulations are considered.
Both formulations contain fewer decision variables and many more constraints than the

Lagle and Washburn formulation. However, the main advantage is the fact that many




of the constraints are nonbinding. Thus, the problem size can be controlled by initially
solving the lincar program with only a small subset of the constraints and jteratively

adding new constraints and resolving as necessary until an optimal solution is achieved.




Hl. METHODOLOGY

The Lagle and Washburn formulation alwayvs produces an exact solution for
“SEGs. However, as the size of the problem grows, the time to solve the LP grows even
more rapidly, making it impractical for solving large CSEGs. This chapter considers two
alternate LP formulations based on preliminary work by Washburn and demonstrates
how to solve these formulations in an iterative manner.

To simplify the prescntation, only one dimensional CSEGs are considered. Also, it
18 assumed that

1. The search arca consists of n cells.
2. The game is plaved for T time periods.
3. The searcher occupies cell 1 at time 1.

4. The evader occupies cell n at time 1.

‘N

The searcher and cvader are each allowed to move one cell left or right or remain
stationary at cach time step of the game, 1e.,

{1.2} i=1
Sin=Ein=<{i—lii+1} i=23..n-1
{n— 11} i=n

/. METHOD ONE
Let g(j.1) be the marginal probability that the evader will be in cell j at time t. Then,

the expected pavoll, v, 1s given by

.
c= EN] = D) Ajaptiglia) (12)

=1 ijeC

where p(i,t) and N arc as previously defined, A(Lj.t)y=1 il i=j and E[N\] denotes the
expected value of N, The searcher wishes to maximize the expected pavofl and the
evader wishes to minimize the expected pavoll.

Given that the marginal probabilities, p(i,t), are specified by the searcher, the evader
then wants to find a strategy to munimize the pavofl of the game.  Let

Y o= {Y.Y...Y;} be a feasible evader path or “track”. If v represents the value of the




game, then the following must hold for all strategies Y and marginal probability dis-

tributions p(i.t).

/

T T
v < ZZA(( Y,.0pli) T (Y1) (13)

=] ieC

where the equality follows from the fact that A(L,Y.t)=11iff i=Y,. Based on (13), the

first alternate formulation can be written as

maxv
subject to
S’(i.11= Lhr=12..T ’ (1
i=1
’
y< ) plrn 3)
S v ¥ 05
[+
J(z N D pld =10 k=12en D= kk+ Lo, 1= 23,7 (16)
I j—-.‘—
pliny = 00 =120 1=12....T (1)

Constraint (14) ensures that the marginal probability must sum to onc for cach time
period and constraint (15) enforces the optimality condition expressed by equation (13).
Finally, constraints (14) and (10) guarantee that there exists a corresponding set of fea-
sible u(1.).t). To illustrate that this is true, consider the CSEEG with six cells and fet k=2

and 1=4. Then, constraint (10) translates to
P20+ p3 + pda) < pla—=1 + pRua—=1 4+ pBa~=1) + pdu—=1) + pSu—=1D

which simply implies that the probability that the searcher will occupy celis 2, 3 or 4 at
time t must not be larger than the probability that he will occupy cells 1, 2, 3, 4 or § at
time t-1. If this condition does not hold, there can not exist a corresponding feasible
“transition” probability, u(i,j.t). In the network interpretation. constraint (14) ensurces

that the total “supply” leaving nodes (1.t-1) and the total "demand” arriving at nodes (1.t

10




for i=1,2,...,n is equal to one. Constraint (16) ensures that the amount of probability
“shipped” along the arcs cannot exceed the “supplv” of probabilitv available.

Even for a moderately sized CSEG, the above formulation contains an extremely
large number of constraints, in particular those which are described in constraints (13)
and (1¢). Thus, 1t would be prohibitive to generate all the constraints and solve the re-
sulting LP. Instead, the algorithm below initially solves the problem with one strategy
Y = {n.n...nj}. Le., the evader remains in cell n for all T time periods, and disregards all
tvpe (16) constraints. Afterward. the violated constraints are added iteratively until all
binding constraints are included in the formulation. The algorithm can be stated as
follows:

Method One Algorithm

Step 0 Set k=0 and let (+*, p°(i.1)) solve the following

LPoy;
max v
subject to
D i =1 1= 12,7 (13)
-
vgs—‘p(n I) (19)
=]
pliy >0, i=12,..0n 1=12..T (2

Step It I (v, p*iin) is feasible by constraint sets (15} and (16), then (v, pi(ir)) is a
solution. Otherwise, go to Step 2.

Step 2. Generate constraints from the constraint sets (13) and (16) which p*(i.0) vio-
lates and add them to problem LP(k) to obtain a new problem LP(k+ 1).

-

Step 3: Let (w1, p*-'(iir)) solve LPtk+ 1), sct k=Kk+ | and go to Step 1.

In Step 2. the feasibility of constraint set (16) is tested from level 1 to level n-2 for every
time period until an infeasible condition is found or the solution can be declared feasible.
The level refers to the number of cells considered. For example, the level 1 feasibility test
consists of ensuring that p(.t) < pg-1t-1) + p(t-1) ~ p+Lt-1) for ieC and
t=23...T, where p(0,s) and p(n+ 1,s) are delined to be zero. If this test is violated, a
constramnt of tvpe (16) 1s added to the linear program for every such vielation of level |
feasibility tests and the LP is solved. 1f no violation is found, level 2 feasibility tests are

performed. These tests ensure that p(i.t) + pii+ LU < p(i-1.t-1) + plit-Dy + pri+ 1D

11




+ p(i+2t-1) fori=1.2,...n-1 and t=273,..., T, where p(0.s) and p(n+ 1,.) are defined to
be zero. These tests continue unul a feasibilitv violation 1s found and the necessary
constraints added or until the solution is found feasible. The number of these con-
straints could potentially grow as large as %n(n-* 1)T, but onlyv a fraction of these con-
straints are needed.

Then. to test for feasibility for constraint (15), find a track, % , for the evader such
that the sum of all p(\'",t) over all t 1s a minimum among all tracks. This can be ac-

complished by solving an appropriate shortest path problem. 1f

T

D p¥a) < vk (21)

=1
then constraint tvpe (135) is violated und the constraint

7

v < Zp( f'{_;) (22)

(=1

must be added.

Method One was altered in two wavs to attempt to reduce computation time. One
variation involved eliminating slack constraints. Since each successive LP is larger than
the previous LP, the time to solve cach LP grows. By eliminating constraints that re-
main slack for several successive LP solutions, the overall size of the LP is reduced.

The other variation involved starting with a set of path constraints, or type (13)
constraints, in addition to the usual starting constraints. If these path constraints can
be chosen so as to cover the critical paths (path constraints that are tight in the final
solution). this may reduce the number of algorithm iterations necessary to arrive at the

problem solution.

B. METHOD TWO
The second method is similar to the first method. except that constraint set (15} is
replaced by the recursive definition of the z(s,s) variables stated in Chapter 11. Using the

fact that A(1j.t) = 1 HT'1 = j, z(e.s) can be redefined as follows:

ts
‘s

(i) = plig) + min z(Aa+ 1) (
kel




where z(-. [+ 1)=0. Both tvpes of constraints serve the same purpose: to ensure that
the gr me value is equal to the minimum pavofl possible for a given p(s.s). However,
constraint set (13) was added as nceded, while constraints corresponding to equation
{23y are all in the mital LP. The advantage of the method is the fact that equation (23)

produces (3n-2)T constraints while constraint set (15) contains 37,

Method Two Algorithm

Step 0: Let k=0 and (1", p%(i.t)) solve the following

I.Pooy:
max v

subject to

Y‘p(,i.z) =l t=12..T (2d)
pa—

i=1

v=z(n (2%)
sty < () +ptia) i= 12000, je L), 1=1,2,..T =1 (20)
plit)y = 0, = 120, t=12.....T (27)

Step I If v pria) 18 feasible to constraint set (16), (v, p*(i,1)) 1s a solution. Other-
wise, ¢o to Step 2.

Step 2o I'ind consraints of tvpe (16) which are violated and add them to problem
LP(K) to obtuin a new problem LP(k+ 1).

Step 30 Let(v-! pr-itiin) solve LP(k+ 1), set K=k +1 and go to Step 1.

Note that the method for finding violated constraints in Step 2 is as described for
Method One.

Method Two was altered in two wavs in an attempt to reduce computation time.
The first vanaton was the method of eliminating slack constraints as done with Method
One. The sccond variation made was adding a group of motion feasibility constraints,
1.e., constraint set (16) to LP(0). This variation is similar to the second variation on
Method One. If this group of motion feasibility constraints is chosen so as to cover
those motion feasibility constraints which are tight in the solution. the number of algo-
rithm 1terations may be reduced.  The method devised for choosing motion feasibility
constraints for the starting group was drawn from examination of CSEG solutions ob-
tained through the use of Method Two. This method proved very successtul and is de-

ccribed below as Method Three.




C. METHOD THREE

Method Three is essentially the second variant of Method Two., except that the
performance of Method Three 1s markedly better because it does not require successive
iterations to arrive at an optimal solution. An exanunation of the tight motion feasi-
bility constraints in optimal solutions using Method Two reveals that all these motion

feasibility constraints are of the form:

li {+1
Z/’“*” < Zp(j,z ) =12 =2 (28)
i=1 =1

All these constraints include cell 1, the left-most cell. These constraints will be referred
to as left-anchored constraints.

Another observation from previous solutions is that the searcher alwavs rushes from
cell T to cell 8-1 during the first 8-1 time periods where t= 6 1s the first tume period in

, ) ) n
which the scarcher and evader can cul.cide. When there are n cells, 6 = [T] when n

1s odd and H=%+ I when nis even. lere [xX] denotes the smallest integer m such that
am. Sinee the searcher and evader cannot occupy the same cell during these first 0-1
ume periods, A(X,, Y, .)=0 for t=1,2....,6-1 for any pair of searcher and evader strate-
gics (N.Y). Thus, no pavofl occurs during periods 1 to 6-1 and z(n.1) must be the min-
imum of z(1.#)) where i=0.8+1,..n. This observation allows for ignoring all those
decision variables from the first -1 time periods. This reduces the number of variables
and constraints by approximately one-third.

Use of this formulation with left-anchored motion feasibility constraints will solve
CSLEGs as large as n=12. In larger CSEGs, there exists another set of tight motion
feasibilitv constraints which are anchored on the right-most cell, cell n.  For thdsc

CSLEGs. inclusion of this set of constraints for the last few time periods leads to an op-

timal solution. If we let = = the first time period in which the right-anchored motion




feasibility constraints are required, then the LP is as follows:
max v
subject to

n

Tp(i.l’) =1 r=6,0+1..T (29)
i=|
g+ D+ pay r=60,0+1...1, i=12...n, je E(i1) (30)
v i i=n4+l—0n+2-00.n (21)
:-H
S £ pla= 1 1= 0410420 T, (= 120 =2 (32)
Ea(i.t; < Em/.t— 1) t=r.t+1,.. 0, I=nn—-1,.3 (33)
i=i j=i=1
plig) = 0 =12, 1=12..T (34)
where z(«. T+ 1)=0. Constraint (29) ensures the marginal probability summed over all

cells 1n a time period 1s equal to one. Constraints (30) and (31) perform the same func-
tion as equation (23). Constraint (32) delincates all levels of left
ability constraints for time periods of interest.  Constraint
right-anchored motion feasibility constraints for time periods of interest,

of variables is ——nI + 1 and the number of constraints is on the order of—xﬂ

,

mg = —n tlurc are approximately n? variables and 4n? constraints.

provides solutions for CSEGs up to at least size n=130.

-anchored motion fea-

The number
Assum-

lhls formulation

all




IV. RESULTS

Methods One and Two were both implemented through the use of a FORTRAN
interface with LINDO (Linear Interactive Discrete Optimizer). Method Three and the
Lagle-Washburn model were implemented in GAMS (General and Algebraic Model
Solver) using MINOS (Modular In-Core Nonlinear Solver). All methods were executed
on an IBM 3033AP mainframe computer at the Naval Postgraduate School, Montercy,
California.

A. METHOD COMPARISON

Method One and its variants performed considerably worse than the ELagle-
Washburn model for n = 8. Figure 3 shows computation time in CPU seconds versus
CSEG size for both methods. Method Two 1s shghtly faster than Method One. but does
not perform as well as the Eagle-Washburn model for n = 10. In igure 4, 2-1 indicates
the performance of Method Two and 2-2 indicates the performunce of the Method Two
variant with slack constraint elimination.

Using Methods One and Two for solving larger CSEGs results in excessive compu-
tation time due to the increased number of LPs that must be solved. The strategy of
solving several smaller LPs instead of one large LP fails because of the large number of

small LPs that must be solved to arrive at the problem solution.
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Figure 3. Computation Time of Method One vs. Eagle-Washburn Method
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Figure 4.  Computation Time of Method Two vs. Eagle-Washburn Method

Method Three proved to dominate the Eagle-Washburn model in all cases tested
(n < 30). Figure 5 shows computation times for various size CSEG solutions under

both models. Mcethod Three allowed for solution of lurger CSEGs than was previousy




ey

econonucal using the Eagle-Washburn model.  Solutions of these larger CSEGs have

similar structure to smaller CSEG solutions, while showing some small differences.
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Figure 5. Computation Time of Method Three vs. Eagle-Washburn Method
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B. CSEG SOLUTION STRUCTURE

Our concentration has teen on finding the optimal searcher and evader marginal
probabilities from the start of the game untl the marginal probabilities reach equihb-
rium.  The strategies of both plavers have been described previously by Eagle and
Washburn [Ref. 1] for one-dimensional CSEGs as large as n=12. Strategics in the
larger gumes do not differ greatly {roni those in smaller games.

One pure strategy that nught be advantageous to the evader includes stavin_ in cell
n until the searcher can reach that cell. If the game were plaved for less than n time
periods, this would be the optimal strategy for the evader. since it would ensure a zero
pavofl. However, for longer games, this strategv is not opt:mal because of the large
pavoll the searcher can force when t = n. This strategy of waiting is part of « larger
group of strategics that can be called "wait-and-run” strategics. The evader stavs in cell
n. or waits, for k time periods, where k=0.1.2..... After he has waited k time periods,
he moves to the left at top speed, one cell per time period, unul reaching the left-most
cells.

Pigures 6 and 7 show that the «.. ger muxed strategy consists of several "wait-and-
run’” pure strategies. If we interpret the probabilities as being parts of a large force. such
as coldiers in an armyv, we can explain the results as follows. Note, in T'igure 7, how 26
units break ofl immediately from the main force of 1000 units in the second time period.
These 36 units continue to move left at the rate of one cell per time period until reaching
cell T at ime 20, This strategy corresponds to waiting zero time periods before running.
Other “wait-and-run” stiategics are used. In cach successive period. the size of the force
which breaks ofl from the muin force in cell nincreases. A large portion of the evader's
force remains in cell nthrough the time period in which the scarcher first arrives in cell
n-1. At this pomnt, the evader disperses this force from cell n as quickiy as is feasible over

the niext few time periods. See Figure 8 for details of this strategy on an expanded scale.
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and then flattens out. Since both plavers can have forces in all cells at this point, the
evader essentially disperses his forces to reach a uniform distribution over all cells.

Instead of using the individual soldiers interpretation, the explanation can also be
made 1n terms of the probability of choosing a pure strategyv from the optimal mixed
strategy. The evader chooses from a number of “wait-and-run” strategies. It 1s more
likelv that he will wait for long periods of time before running than running early in the
game. After reaching the left-most cells, 1t appears the evader’s motion becomes more
random as he spreads out towards a uniform distribution.

The searcher begins the game by rushing, or moving right at top speed, one cell per
time period. His optimal strategy alwavs consists of rushing over the first 8-1 periods
where 8 = the first time period in which the searcher and evader mav occupy the same
cell. Consider the five cell CSEG where the searcher begins in cell 1 and the evader be-
gms i cell 5 Two time periods later, t=3, the scarcher could travel as far right as ccll
3. while the evader could travel as far left as cell 3. Thus, for the five cell CSEG., =3,
This first possible mecting pont is cell [l] when n 1s odd and cell %-H when nois

5

- <

even. The scarcher gains nothing by stalling during these first time periods: for every
time period he waits, he extends the number of zero payvofls he will receive.

During some time period (6 for CSEGs where n is even, 6 + 1 for CSLGs where n
is 0dd), the evader could for the first time be in a cell to the left of the scarcher. [or
example, consider the six cell CSEG. At time 4, the searcher could be as far right as cell
4. the evader as far left as cell 3. If the plavers occupy those cells when t= 4, then during
time 3, the scarcher and evader were in cells 3 and 4, respectively. Thus, at ume 4, the
scarcher must sphit his forces between cells 3 and 4 to ensure that the evader cannot pass
by without coincidence. This split of searcher forces arises in all CSEGs.

To return to using the analogy of individual soldier movement. after this initial split
1s made. the majority of the searcher’s forces continue rushing towards cell n, while smuall
forces split from this majority at every time step.  Sce Figures 9 and 10. These small
forces travel back towards cell 1, much as the evader’s "wait-and-run” forces do. These
small fractions of the scarcher’s forces make sure that the “wait-and-run” forces of the
evader do not break through without paving some penalty. As with the evader’s "wait-
and-run” forces, the searcher’s small split-ofT groups increase in size as the searcher nears
ccll n. Like the cvader, once the scarcher reaches cell n, he also disperses this main force
as quicklyv as feasible, The forees then tend to move towards the uniform distribution.

See Thigure 11 for an expanded view of the scarcher’s strategy for the final time periods.




CELLS

Figure 9, SearcherStrategy

ro
n




1 ]1000 0 © 0 0 0 0 0 0 0 0 o 0 0 0 0 0 0 o 0
2| 01000 O 0 0 0 o] o 0 0 0 0 0 0 o o0 0 0 ¢ o
31 o 0 1000 0O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 [
4l 0 0 0 1000 O 0 0 0 0 0 o0 0 0 0 0 0 0 0 0 0
51 o 0 0 0 1000 © 0 o 0 o 0 0 0 0 0 0 0 0 0 0
61 0 0 u 0 0 1000 © 0 0 0 0 o o 0 o o0 0 0 0 0
71 0 0 0 0 0 0 1000 © 0 0 0 0 0 0 0 0 0 0 0 0
g8l o 0 0 0 0 0 0 1000 O 0 0o o0 ¢ 0o ¢ o0 o0 O ¢ 0
91 o 0 o 0 0 0 0 0 1000 O 0 0 0 0 0 0 0 0 0 0
101 o 0 0 o 0 0 0 0 0 1000 O 0 o] 0 0 0 0 0 0 0
11l o 0 ] 0 0 0 0 0 0 500 500 0 0 0 0 0 0 0 0 0
121 o 0 0 0 0 0 0 0 22 10 491 477 O 0 0 0 o 0 0 0
131 o o o (¢] ¢ o 0 10 22 0 13477477 O 0 0 o0 0 0 0
141 © 0 0 0 0 0o 10 9 13 13 19 13 470 452 0 0 0 o] 0 0
Ti51 o 0 0 o o 10 9 1 13 19 13 19 22 441 441 0 0 0 0 0
I61l o0 0 0 0 10 9 13 13 15 17 19 22 42 10 415 415 4] 0 4] (]
M17 | o 0 6 10 5 15 15 15 17 19 22 24 28 33 33 382 282 0 0 0
E8]1 0 0 10 5 15 15 15 17 19 22 24 28 33 33 41 61 342 361 0 0
191 0 10 5 15 15 15 17 19 22 24 28 33 33 41 41 52 52 290 290 O
20l 0 15 15 15 15 17 19 22 26 28 33 33 41 41 52 52 84 55 220 220
21115 15 15 15 17 19 22 24 28 33 33 41 41 52 52 66 73 147 147 147
22119 19 19 19 19 22 24 28 33 33 41 41 52 52 66 73 110 110 110 110
23 1 26 24 2¢ 29 2¢ 2¢ 28 33 33 41 41 B2 52 66 73 88 88 83 88 88
24 | 28 28 28 28 28 28 33 33 41 41 B2 52 66 73 73 73 73 73 73 73
25 1 3¢ 3¢ 3¢ 3¢ 3¢ 34 3¢ &1 Gl 52 52 64 64 64 64 64 64 64 64 64
26 1 39 39 39 39 39 39 41 41 52 52 58 58 58 58 58 58 58 58 58 58
27 1 45 45 45 45 45 45 45 K2 52 B8 658 52 52 52 B2 52 52 52 52 82
28 | 53 53 53 B3 53 53 53 53 B8 5B 46 46 46 46 46 46 G6 a6 46 46
29 | 56 56 56 56 56 56 56 56 56 45 45 45 45 45 45 45 45 45 45 45
30 | 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50
31 | 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 S50 50 S0 50

Figure 10. Searcher Marginal Probabilities (x1000) for 20-Cell CSEG.
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Most often, he will continue to rush towards cell n. Sometimes. with a small probability,
he will turn back and rush towards cell 1. At each time step, the searcher makes a de-
ciston on whether to reverse motion; each time the probability of reversing direction in-
creases. Once the searcher has reached cell n (if he has chosen this strategy), his strategy
1s similar to the evader as both spread towards a uniform distribution over all cells.
Another striking point of the optimal solutions is the tendency of neighboring p(i,t)
and q(ut) values to be equal. These groups of equal value come most often in pairs;
towards the end of the game, thev come in larger groups. This is most easily seen in
Figures 7 and 10, the tabular displavs of searcher and evader probability distributions
for the 20-cell CSEG. Although there are exceptions, these exceptions probably result
from arriving at an alternate optimal solution. In working with small CSEGs that ex-
hibit this exceptuon, adding additional constraints to force equality among neighbors

results m an alternate optimal solution.




V. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS
The formulation of Methods One and Two was intended to reduce computation
time in two wavs:

1. Reducing the number of decision variables by using marginal probability variables
(pt1.0) instead of probability flow varables (u(i.).t)).

2. Reducing the work required to solve the game by reducing the number of con-
straints.
The switch to margmal probubihity variables reduces the number of variables needed to
define the searcher’s strategy by two-thirds for the one-dimensional game. A higher
fuctor would applv in the two-dimensional game. However, the iterative method of sc-
lecting constraimnts for successive LP solutions proved to drasticallv increase the compu-
tation e necessary to solve larger games.
Inspection of the results obtained from various sizes of CSEGs solved with Methods
One und Two led to the formulation of Method Three. With Method Three, computa-
tion ume was further reduced by:

I. Ehminating decision variables for those time periods the searcher and evader can-
not comeide.

2. Using those feaubility constraints of tvpe (16) which contain p(l.t) for cach time
period.
3. Using those feasibihity constramnts of type ¢ 10y which contain p(n.v) for the final few

time periods,

Llimmating the first few time pertods in the one-dimensional CSEG reduces the number
of variables by approximatelv one-third. The number of constraints is al<o reduced by
one-third.

Mcthod Three proves to be a faster solution method than the formulation of Lagle
and Washburn, The use of just left- and right-anchored constraints for motion feasibil-

ity constraints 1s eflective for n < 20,

B. RECOMMENDATIONS
The ume required to solve CSEGs on the order of n= 30 still remains very large even
with the reduction achieved with Method Three. Further reduction may be possible

through the elinunation of more variables or constraints,
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In Methods Two and Three, all type (20) constraints are used. It may be possible
to idenufy and ehminate those constraints which are alwavs slack. Previously mentioned
was the tendency of neighboring p(i.t) and g(1.t) values to be equal. The number of
variables mayv be further reduced if the game can be modeled using pairs or groups of
cells as decision variables.  Extension of Model Three to the two-dimensional game
should be attempted. The two dimensional CSEG would more closely model the real
aspects of phvsical search than the one dimensional game. The solutions to CSEGs are
very structured and there mayv be more wavs of exploiting their characteristics to solve

larger games more quickly.
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APPENDIN  GAMS PROGRAM OF METHOD THREE

STITLE One-dimensional CSEG written by LT B.P. Bothwell March 1990
SONTEXT
This model uses the LP presented as Method Three. It has been

proven to solve CSEGs up to a size of n=30. The dimensions of the set I

(cells) is equal to n. The dimension of the set T (time) is n+l where

t=FIRST, FIRST+1,...,INT(1.5n)+1 where FIRST = the first time period in

which the searcher and evader may first coincide. The model only

requires the motion feasibility constraints of level n-2 and lower. For

example, if n=12, it is only necessary to include FEAS! through FEAS10
and RFEAS1 through RFEAS10. If it is desired to solve a CSEG of size

n>30, additional FEAS and RFEAS constraints must be added. The program

displays searcher and evader marginal probabilities, game values, and

minimum and maximum possible pavoff (z,ze) values.

SOFFTEXT

SOFFSYMXREF OFFSYMLIST OFFUELLIST OFFUELXREF

OPTIONS LIMROw=0,LIMCOL=0,SOLPRINT=0FF,RESLIM=3000,ITERLIM=12000
OPTION LP=MINOSS5;

SETS
I cells /C1*C12/
T time periods JT7%T19/;
ALIAS (I1,J);
PARAMETERS
FIRST first non-trivial time period
ULTRA first time period for right-handed constraints ;
SONTEXT

FIRST must be set to the first time period in which the searcher and
evader can coincide.

ULTRA is the first time period in which right-anchored constraints
are used. It is currently set to write these constraints for the last

four time periods. .

SOFFTEXT
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FIRST=7;
ULTRA=CARD(T)+FIRST-4;
POSITIVE VARIABLES

P(I,T) searcher marginal distn in cell i at time t
2(1,T) min value obtainable from t to T given evader in i at t;
SONTEXT

P(i,t) is fixed at zero if it is infeasible for the searcher

to reach that cell

SOFFTEXT
P.FX(I,T)S$S(ORD(I) GT ORD(T)+FIRST-1) = 0;
VARIABLE
\% game value;
SONTEXT

Equation description

GAMEVAL constraints ensure v < z(i,t) for i > FIRST-1 and t = FIRST
DIST* constraints ensure p(1l,t)+p(2,t)+...+p(n,t)=1 for t>FIRST
NET* constraints ensure z2(i,t) < z(j,t+l1) + p(i,t) for i in C,
j in E(i,t) and t=FIRST,...,CARD(T)-1
FEASa constraints ensure p(1l,t)+...+p(a,t) < p(1i,t-1)+...+p(a+l,t-1)
for a=1,...,n-2 and t > FIRST+1
RFEASa constraints ensure p(n,t)+...+p(n+l-a,t) < p(n,t-1)+...+p(n-a,t-1)
for a=1,...,n-2 and t > FIRST+1

SOFFTEXT

EQUATIONS
GAMEVAL(I,T) game value constraints
DISTONE(T) inequality distn constraints
DISTTWO(T) equality distn constraint-final time period
NETL(I,T) intermediate network constraint type 1
NETE(I,T) intermediate network constraint type e
NETM(I,T) intermediate network constraint type m
FEAS1(T) feasibility constraints for searcher marginals
RFEAS1(T)
FEAS2(T)




RFEAS2(T)
FEAS3(T)
RFEAS3(T)
FEAS4(T)
RFEAS4(T)
FEAS5(T)
RFEASS(T)
FEAS6(T)
RFEAS6(T)
FEAS7(T)
RFEAS7(T)
FEASS(T)
RFEASS(T)
FEAS9(T)
RFEAS9(T)
FEAS10(T)
RFEAS10(T)
FEASL1(T)
RFEAS11(T)
FEAS12(T)
RFEAS12(T)
FEAS13(T)
RFEAS13(T)
FEAS14(T)
RFEAS14(T)
FEAS15(T)
RFEAS15(T)
FEAS16(T)
RFEAS16(T)
FEAS17(T)
RFEAS17(T)
FEAS18(T)
RFEAS18(T);

SONTEXT

pR




FEAS19(T)

RFEAS19(T)

FEAS20(T)

RFEAS20(T)

FEAS21(T)

RFEAS21(T)

FEAS22(T)

RFEAS22(T)

FEAS23(T)

RFEAS23(T)

FEAS24(T)

RFEAS24(T)

FEAS23(T)

RFEAS25(T)

FEAS26/T)

RFEAS26(T)

FEAS27(T)

RFEAS27(T)

FEAS28(T)

RFEAS28(T) ;
SOFFTENT
GAMEVAL(I,T)S((ORD(1) GE FIRST~1) AND (ORD(T) EQ 1)).

v =L= 2(1,T) ;
DISTONE(T)S(ORD(T) LT CARD(T))..

SUM(I,P(I,T)) =L= 100 ;
DISTTWO(T)S(ORD(T) EQ CARD(T))..

SUM(I,P(I,T)) =E= 100 ;
NETL(I,T)$(ORD(I) GT 1)..

2(1,T) =L= Z(1-1,T+1) + P(I,.) ;
NETE(I,T)..

Z(1,T) =L= Z2(I,T+1) + P(I,T) ;
NETM(I,T)S$(ORD(I) LT CARD(I))..

Z(1,T) =l= Z(1+1,T+1) + P(I,T) ;
FEAS1(T)S((ORD(T) GE 2) AND (ORD(T) LT CARD(T))).
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SUM(IS(ORD(I) EQ 1),P(I,T)) =L= SU
FEAS2(T)S((ORD(T) GE 2) AND (ORD(T) LT

SUM(IS(ORD(I) LE 2),P(I,T)) =L= SUM(JS(ORD(J)

FEAS2{T)$((ORD(T) GE 2) AND (ORD(T) LT

SUM(IS(ORD(I) LE 3),P(I,T)) =L= SUM(JS$(ORD(J)

FEAS&(T)S((ORD(T) GE 2) AND (ORD(T) LT
SUMCIS(ORD(I) LE 4),P(1,T)) =L= SU
FEASS(T)S((ORD(T) GE 2) AND (ORD(T) LT

SUM(IS(ORD(I) LE 5),P(I,T)) =L= SUM(JS$(ORD(J)

FEAS6(T)S((ORD(T) GE 2) AND (ORD(T) LT
SUM(IS((ORD(I) LE 6)),P(1,T)) =L=
FEAS7(T)S((ORD(T) GE 2) AND (ORD(T) LT
SUMCIS((ORD(I)Y LE 7)),P(I,T)) =L=
FEAS8(T)S((ORD(T) GE 2) AND (ORD(T) LT
SUM(ISC(ORD(I) LE 8)),P(I,T)) =l=
FEASI(T)S((ORD(T) G 2) AND (ORD(T) LT
SUM(IS((ORD(I) LE 9)),P(I,T)) =L=
FEAS1O0(T)SC(ORD(T) GE 2) AND (ORD(T) LT
SUMCIS((ORD(I) LE 10)),P(I,T)) =l=
FEASII(T)SC(ORD(T) GE 2) AND (ORI(T) LT
SUMCISC(ORD(IY LE 11)),P(I,T)) =L=
FEAS12(T)S$((ORD(T) GE 2) AND (ORD(T) LT
SUM(IS((OKD(I) LE 12)),P(I,T)) =L=
FEAS13(T)S((ORD(T) GE 2) AND (ORD(T) LT
SUMCIS((ORD(T) LE 13)),P(I,T)) =L=
FEAS14(T)S((ORD(T) GE 2) AND (ORD(T) LT
SUMCISC(ORD(I) LE 14)),P(I1,T)) =L=
FEAS15(T)S((ORD(T) GE 2) AND (ORD(T) LT
SCM(IS((ORD(I) LE 15)),P(1,T)) =L=
FEAS16(T)S$((ORD(T) GE 2) AND (ORD(T) LT
SUMCIS((ORD(I) LE 16)),P(I,T)) =L=
FEAS17(T)$((ORD(T) GE 2) AND (ORD(T) LT
SUM(IS((ORD(I) LE 17)),P(I,T)) =L=
FEASI18(T)S({ORD(T) GE 2) AND (ORD(T) LT
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SUM(IS((ORD(I) LE 18)),P(I,T)) =L=
SONTEXT
FEAS19(T)$((ORD(T) GE 2) AND (ORD(T) LT
SUM(IS((ORD(I) LE 19)),P(I,T)) =L=
FEAS2C(T)S((ORD(T) GE 2) AND (ORD(T) LT
SUM(IS((ORD(I) LE 20)},P(I,T)) =L=
FEAS21(T)$((ORD(T) GE 2) AND (ORD(T) LT
SUM(IS((ORD(I) LE 21)),P(I,T)) =L=
FEAS22(T)$((ORD(T) GE 2) AND (ORD(T) LT
SUM(IS((ORD(I) LE 22)),P(I,T)) =L=
FEAS23(T)$((ORD(T) GE 2) AND (ORD(T) LT
SUM(IS((ORD(I) LE 23)),P(I,T)) =L=
FEAS24(T)S((ORD(T) GE 2) AND (ORD(T) LT
SUM(IS((ORD(I) LE 24)),P(I,T)) =L=
FEAS25(T)$((ORD(T) GE 2) AND (ORD(T) LT
SUM(IS((ORD(I) LE 25)),P(I,T)) =L=
FEAS26(T)$((ORD(T) GE 2) AND (ORD(T) LT
SUMCIS((ORD(I) LE 26)),P(I,T)) =L=
FEAS27(T)$((ORD(T) GE 2) AND (ORD(T) LT
SUM(IS((ORD(I) LE 27)),P(I,T)) =L=
FEAS28(T)S((ORD(T) GE 2) AND (ORD(T) LT
SUM(IS((ORD(1) LE 28)),P(I,T)) =L=
SOFFTEXT
RFEAS1(T)$(ORD(T) GE ULTRA)..
SUM(IS(ORD(I) EQ CARD(I)),P(I,T))

SUM(JS((ORD(J)

CARD(T)))..
SUM(J$((ORD(J)
CARD(T)))..
SUM(J$C((ORD(J)
CARD(T)))..
SUM(J$((ORD(J)
CARD(T)))..
SUM(J$({ORD(J)
CARD(T))). .
SUM(J$C(ORD(J)
CARD(T))). .
SUM(JS((ORD(J)
CARD(T)))..
SUM(JS((ORD(J)
CARD(T))). .
SUM(J$((ORD(J)
CARD(T))). .
SUM(JS((ORD(J)
CARD(T))). .
SUM(JI$((ORD(J)

i

I=

SUM(JS(ORD(J) GE CARD(J)-1),P(J,T-1)) ;

RFEAS2(T)S(ORD(T) GE ULTRA)..

SUM(IS(ORD(I) GE CARD(I)-1),P(I,T)) =L=
SUM(JS(ORD(J) GE CARD(J)-2),P(J,T-1)) ;

RFEAS3(T)S(ORD(T) GE ULTRA)..

SUM(IS(ORD(I) GE CARD(I)-2),P(I,T)) =L=
SUM(JS(ORD(J) GE CARD(J)-3),P(J,T-1)) ;

RFEAS4(T)S(ORD(T) GE ULTRA)..

SUM(IS(ORD(I) GE CARD(I)-3),P(I,T)) =L=
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LE

LE

LE

LE

LE

LE

LE

LE

LE

LE

19)),P(J,T-1));

21)),P(J,T-1));

22)3,P(J,T-1));

23)),P(J,T-1)2;

"4)),P(J,T-1));

25)),P(J,T-1));

26)),P(J,T-1));

273),P(J,T-1));

28)),P(J,T-1));

29)),P(J,T-1));




SUM(J$(ORD(J) GE CARD(J)-4),P(J,T-1)) :

RFEAS5(T)$(ORD(T) GE ULTRA)..
SUM(IS(ORD(I) GE CARD(I)-4),P(I,T)) =L=

SCM(JS$(ORD(J) GE CARD(J)-5),P(J,T-1)) ;

RFEAS6(T)S(ORD(T) GE ULTRA)..
SUM(IS(ORD(I) GE CARD(I)-5),P(1,T)) =L=

SUM(J$(ORD(J) GE CARD(J)-6),P(J,T-1)) ;

RFEAS7(T)$(ORD(T) GE ULTRA)..
SUM(IS(ORD(I) GE CARD(I)-6),P(I,T)) =L=

SUM(JS(ORD(J) GE CARD(J)-7),P(J,T-1)) ;

RFEAS8(T)S(ORD(T) GE ULTRA)..
SUM(IS(ORD(I) GE CARD(I)-7),P(I1,T)) =L=

SUM(JS(ORD(J) GE CARD(J)-8),P(J,T-1)) ;

RFEAS9(T)S(ORD{T) GE ULTRA)..
SUM(IS(ORD(I) GE CARD(I)-8),P(I,T)) =L=

SCM(JS(ORD(J) GE CARD(J)-9),P(J,T-1)) ;

RFEAS10(T)S(ORD(T) GE ULTRA)..
SUM(I$(ORD(I) GE CARD(I1)-9),P(I,T)) =L=

SCM(JS(ORD(J) GE CARD(J)-10),P(J,T-1)) ;

RFEAS11(T)S(ORD(T) GE ULTRA)..
SCM(IS(ORD(I) GE CARD(I)-10),P(I,T)) =L=

SUM(JS(ORD(J) GE CARD(J)-11),P(J,T-1))

RFEAS12(T)S(ORD(T) GE ULTRA)..
SUM(IS(ORD(I) GE CARD(I)-11),P(1,T)) =IL=
SUM(JS(ORD(J) GE CARD(J)-12),P(J,T-1))

RFEAS13(T)S(ORD(T) GE ULTRA).
SUM(IS(ORD(I) GE CARD(I)-12),P(I,T)) =L=

SUM(J$(ORD(J) GE CARD(J)-13),P(J,T-1))

RFEAS14(T)S(ORD(T) GE ULTRA)..
SUMCIS(ORD(I) GE CARD(I)-13),P(I,T)) =L=

SUM(J$(ORD(J) GE CARD(J)-14),P(J,T-1)) ;

RFEAS15(T)$(ORD(T) GE ULTRA)..
SUM(IS(ORD(I) GE CARD(I)-14),P(I,T)) =L=

7

b

3

b

3

3




SUM(J$(ORD(J) GE CARD(J)-15),P(J,T-1)) ;

RFEAS16(T)S$S(ORD(T) GE ULTRA)..
SUM(IS(ORD(I) GE CARD(I)-15),P(I,T)) =L=

SUM(JS$(ORD(J) GE CARD(J)-16),P(J,T-1))

RFEAS17(T)$(ORD(T) GE ULTRA).
SUM(IS(ORD(I) GE CARD(I)-16),P(I,T)) =L~

SUM(J$(ORD(J) GE CARD(J)-17),P(J,T-1)) ;

RFEAS18(T)S(ORD(T) GE ULTRA)..
SUM(IS(ORD(I) GE CARD(I)-17),P(I,T)) =L=

SUM(J$(ORD(J) GE CARD(J)-18),P(J,T-1)) ;

SONTEXT
RFEAS19(T)$(ORD(T) GE ULTRA)..
SUCM(IS(ORD(I) GE CARD(I)-18),P(I,T)) =L=

SUM(JS(ORD(J) GE CARD(J)-19),P(J,T-1)) ;

RFEAS20(T)S$(ORD(T) GE ULTRA).
SUM(IS(ORD(I) GE CARD(I)-19),P(I,T)) =L=

SUM(J$(ORD(J) GE CARD(J)-20),P(J,T-1)) ;

RFEAS21(T)S(ORD(T) GE ULTRA)..
SUM(IS(ORD(1) GE CARD(I)-20),P(I,T)) =L=

SUM(JS(ORD(J) GE CARD(J)-21),P(J,T-1))

RFEAS22(T)S(ORD(T) GE ULTRA)..
SUM(IS(ORD(I) GE CARD(I)-21),P(I,T)) =L=

SUM(JS$(ORD(J) GE CARD(J)-22),P(J,T-1))

RFEAS23(T)$(ORD(T) GE ULTRA)..
SUM(IS(ORD(I) GE CARD(I)-22),P(I,T)) =L=

SUM(JS(ORD(J) GE CARD(J)-23),P(J,T-1)) ;

RFEAS24(T)S(ORD(T) GE ULTRA)..
SUM(IS(ORD(I) GE CARD(I)-23),P(I,T)) =L=

SUM(J$(ORD(J) GE CARD(J)-24),P(J,T-1)) ;

RFEAS25(T)$(ORD(T) GE ULTRA)..
SUM(IS(ORD(I) GE CARD(I)-24),P(I,T)) =L=

SUM(JS(ORD(J) GE CARD(J)-25),P(J,T-1))

RFEAS26(T)$(ORD(T) GE ULTRA)..
SUM(IS(ORD(1) GE CARD(I1)-25),P(I,T)) =L=

RIS




SUM(JS(ORD(J) GE CARD(J)-26),P(J,T-1)) ;
RFEAS27(T)S(ORD(T) GE ULTRA).
SUM(IS(ORD(I) GE CARD(I)-26),P(I,T)) =L=
SUM(JS(ORD(J) GE CARD(J)-27),P(J,T-1)) ;
RFEAS28(T)S(ORD(T) GE ULTRA)..
SUM(IS(ORD(I) GE CARD(I1)-27),P(I,T)) =L=
SUM(JS(ORD(J) GE CARD(J)-28),P(J,T-1)) ;
SOFFTEXT
MODEL CSEG /ALL/ ;
SOLVE CSEG USING LP MAXIMIZING V ;
SONTEXT
DISPLAY statements show values of p, v and z in LP solution
SOFFTEXT
DISPLAY P.L ;
DISPLAY V.L ;
DISPLAY Z.L ;
SCNTEXT
q(i,t) solution comes from dual - network equation slack values
SOFFTENT
PARAMETER
Q(I,T) evader marginals;
Q(I,T) = 100*(NETL.M(I,T)+NETE. M(I,T)+NETM. M(I,T));
DISPLAY Q ;
SONTEXT
u(i,t) computes the maximum score obtainable to the searcher if
he is in cell i and evader marginals are given
SOFFTEXT
PARAMETER
ZE(I,T) longest path by searcher;
ALIAS (T,TP);
ZE(I,T)S(ORD(T) EQ 1)=SUM(TP$(ORD(TP) EQ CARD(T)),Q(I,TP))
LOOP(TS$(ORD(T) LT CARD(T)),2E(I,T+1)=SUM(TPS(ORD(TP)+0ORD(T) EQ CARD(T)),
Q(I1,TP))+MAX(ZE(I-1,T),2E(1,T),Z2E(I+1,T)));
DISPLAY ZE;
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